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Restrictions on the Phase Diagrams for a 
Large Class of Multisite Interaction Spin Systems 

J a m e s  L. Monroe  1 

Received March 12, 1991 

Through the proof of two very general theorems involving Ising spin systems 
with multisite interactions, specific regions of the complex h plane, where h is 
the external magnetic field, are shown to be free of zeros of the partition 
function. Hence in these regions the partition function is analytic and phase 
transitions are absent. As an example: for systems with ferromagnetic multisite 
interactions involving even numbers of sites, no phase transition occurs outside 
of an interval centered on the origin of the real h axis and of the form ( - C ( T ) ,  
C(T)), where T is the temperature. For T--, 0, C (T )~  0 and phase transitions 
can occur only at h = 0. 
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Lattice spin systems with multisite interactions, where by multisite inter- 
actions we mean interactions involving three or more sites and which 
hereafter will be denoted as MSIs, have been used to model a wide variety 
of physical systems, ranging from binary alloys (1) to gauge field theories (2) 
to lipid bilayers. (31 Such systems have veryrich and interesting phase 
diagrams as well as other interesting properties. Due to the greater com- 
plexity of such systems, rigorous results for these systems are rather limited. 
For example, for ferromagnetic pair-interaction Ising spin models one has 
the Lee-Yang circle theorem (4) for the zeros of the partition function, 
which guarantees that phase transitions can occur only when the magnetic 
field is zero. No such analogous results exist for MSI systems. In fact, 
Monte Carlo results indicate the presence of phase transitions at nonzero 
values of the magnetic field for a number of MSI system. (5'6) 
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Hence phase diagrams indicate that zeros of the partition function, are 
not confined to the unit circle as they are in the Lee-Yang cases. This has 
been shown for some quasi-one-dimensional systems by direct computa- 
tion. (7) However, no theorems exist locating the zeros for any general 
group of such systems. Only very limited results for specific systems exist. 

Ruelle (8,9) has presented a theorem setting forth conditions which if 
met lead to finding regions of the complex magnetic field plane free of 
zeros, thereby establishing the lack of phase transitions in these regions. 
While Ruelle applied his theorem to a number of lattice spin models having 
pair interactions, it can be applied to MSI systems as well. In the past 
the present author has used the theorem to study some specific 
MSI systems, (1~ but here we wish to present some general results which 
put some overall restrictions on the structure of the phase diagrams of such 
systems. The results deal with two very general sets of MSI systems, one 
having ferromagnetic interactions involving even numbers of sites with the 
exception of the single-site interactions with the magnetic field, and another 
set of systems with again ferromagnetic interactions involving an even 
number of sites and in addition either ferromagnetic or antiferromagnetic 
interactions involving an odd number of sites. Each site may interact with 
only a finite number of other sites. The specific type of lattice or even the 
dimensionality of the lattice does not come into play. Hence the results 
apply to a very general class of MSI systems. 

We denote by A a collection of sites and on each site is a spin variable 
a~= -t-1, where the subscript i denotes the ith site, i6A .  The spin inter- 
actions are given by the Hamiltonian 

~ ( { ~ } ) = - -  ~ jA(CrA+I)-- ~ h~(a~+l) (1) 
A ~ A  i c A  

where G a = I l i ~ A ~ i  and A is any finite set of lattice sites of A with 
[AI = t h e  number of sites in A and [A[/>2. Physically, hi represents the 
external magnetic field acting on the ith site. The partition function can be 
written as 

P(z l , z2  ..... Z,A,)= • e ~v(x) [ I  zi (2) 
X ~ A  i E X  

The sum is over all X~_A, where X is the collection of sites with a =  +1, 
U(X) the contribution from the first sum in (1) given X, zi = exp(2flh~), and 
fl = 1/(kt). 

Ruelle's theorem uses the idea of "contractions" introduced by 
Asano, (12/ where one takes two separate sets of sites and then contracts 
these to form one bigger system. This process can be repeated indefinitely 
to form larger and larger systems. The theorem follows. 
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T h e o r e m  1. Let A' and A" be two finite sets of sites and P' and P" 
their respective partition functions. It is assumed that there exist closed 
subsets M'i of the complex plane such that 0 r M; and P' -r 0 when 

z; r M; (3) 

for all i e A'. Similar assumptions hold for P". Define 

P =  ~, expE- f lU ' (Xc~x ' ) -BU"(Xc~x" ) ]  [-[ zi 
X ~ A ' ~ A "  i e X  

Then P # 0 when 

M;, i e A ' \ A "  

zir ~mT, i ~ A " \ A '  

[ . - M ; M " ,  i~A '  c~A" 

where 

--M;M~' = { -z[z;': z; e M" and z;' eM; '}  

(4) 

(5) 

(6) 

A great deal of difficulty arises in the use of this theorem because, as 
stated, all the zi are independent of each other. Since in general h i=  h for 
all i~ A, we are interested in the case where all z i are equal to each other. 
Ruelle's next theorem allows us to set all zi equal to one another in special 
circumstances and then find regions free of zeros. 

T h e o r e m  2. Let Q(z) be a polynomial of degree n with complex 
coefficients and P(Zl ..... zn) a polynomial which is symmetric in its 
arguments, of degree 1 in each, and such that 

P(z, z,..., z) = Q(z) (7) 

If the roots of Q are all contained in a closed circular region M, and 
ziCM, .... z , r  M, then P(zl ..... zn)r 

A circular region is the inside or outside of a circle or a half-plane. All 
the systems considered in the following two sections have the symmetry 
required by Theorem 2. 

We now present our new theorems regarding MSI systems. 

T h e o r e m  3. For spin systems with Hamiltonians given by (1) with 
only ferromagnetic interactions involving an even number of sites, i.e., 
JA ~> 0, [A] an even number, and no site is involved in more than a finite 
number of interactions N, then there is in the complex h plane an interval 
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of the real h axis, centered on h = 0 ,  and of the form ( - C ( T ) ,  C(T)) 
outside of which there are no phase transitions. As T~O, C ( T ) ~ 0  and 
hence the interval shrinks to h = 0. 

Proof. Consider separately each MSI and the set of  sites it involves, 
that is, each MSI determines a system A'. The Hamiltonian for one of these 
systems consists of  the appropriate zi and a single term --JA(a A + 1). For 
such a system the conditions of  Theorem 2 are met and we can set all zi 
equal. Q(z) has the form 

Q ( z )  = WzlAl + ~IAI-  1 I A I - 2 1  

where W =  exp(2/3JA). We need to find a closed circular region containing 
the zeros of Q(z). After some rearrangement the above can be written as 

Q(z)=zlAI/22 tAI lcoshlAl(~h)E(W+l)+(W-1)thlAl(flh)] (9) 

Hence for the zeros of  Q(z) we have 

1 + W~ 1/IAI 
tanh(//h) = \ f - - Z ~ J  (]o) 

the negative number Therefore tanh(/3h) equals the IAlth roots of 
(1 + W ) / ( 1 -  W). For the case IAI = 4  a typical arrangement is shown in 
Fig. la. As W is varied, by varying the temperature T, the solutions to (10) 
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Fig. 1. a.) Zeros in the tanh(flh)-plane for a four site system with a ferromagnetic four site 
interaction lie on the two dotted lines shown, b.) Zeros in the z-plane for the system of part 
la lie on the two dotted circles shown. The closed circular region M is the solid-line circle and 
the region outside the circle. 
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move along the two dashed lines shown. In general there are kA]/2 lines 
through the origin of the tanh(flh) plane along which the zeros lie, but for 
IAI an even number, no dashed line lies along the real tanh(flh) axis. We 
need to find closed circular regions of the z plane containing the zeros of 
Q(z). The straight lines of the tanh(flh) plane map to circles in the z plane 
which pass through the points z = +1 (see Ahfors(13)). The two circles to 
which the two dashed lines of Fig. la map are shown in Fig. lb. Hence we 
have as our closed circular region containing the zeros of Q(z) the outside 
of a circle centered on the origin of the z plane and with a small enough 
radius r to lie inside the circles through the points + 1. The solid circle of 
Fig. lb is such a circle for the LAI = 4  case. It is important to note that the 
radius r is independent of T. Hence by Theorem 2 we have closed subset 
Mi, meeting the requirements of Theorem 1. For  a given site each contrac- 
tion by the rules of the set product, Eq. (5), will produce a new circular 
region centered on the origin whose new radius is simply a product of the 
radii of the two circles associated with the precontracted systems. Since 
each site is involved in a finite number of interactions, then after the full 
system is built up, each zi will have a circular region of nonzero radius 
R, R > 0, centered on the origin of the z plane which is free of zeros of the 
partition function. Thus, for h < (kT/2)ln(R)= -C(T)  one has no phase 
transition, i.e., the partition function is analytic. Now by symmetry, since 
IAI is even, one also has the same result for h > (kT/2) ln(1/R) = C(T), and 
then as T ~  0 one has a phase transition only at h = 0. [] 

The above theorem is stated so as to emphasize the general restrictions 
one can place on the phase diagrams of an extremely wide class of 
MSI systems. For a specific MSI system one must find the radius r shown 
in Fig. lb appropriate for that system. Then the radius R is found based on 
the number of contractions necessary to construct the full system. As an 
example we show in Fig. 2 the phase transition-free region in the h-T plane 
for a system involving four-site interactions where each spin is a part of 
four such interactions. The models numbered 2, 4, and 5 of Heringa et al. (5) 
all meet these requirements. 

For  the case where interactions involving both odd and even numbers 
of sites are present, we do not have the symmetry of the Hamiltonian we 
had in Theorem 3 and therefore the portion of the real h axis free of phase 
transitions is more restricted. The theorem for such systems follows. 

T h e o r e m  4. For  spin systems with Hamiltonians given by (1) with 
Jn >>-0 if [A[ is an even number and Ja <<-0 if [A[ is an odd number, and 
no site is involved in more than a finite number of interactions, there is in 
the complex h plane an interval of the real h axis of the form ( - o o ,  C(T)) 
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T 

Fig. 2. The cross-hatched region of the h -  Tplane is free of the zeros of the partition 
function and therefore is a region where phase transitions can not  occur. 

with C ( T ) < 0  in which no phase transition occurs. As T~O, C(T)~O 
and therefore along the entire negative, real h axis there are no phase 
transitions. 

Proof. The proof is very similar to that of Theorem 3 and only those 
areas where differences occur will be presented in detail. For  the initial 
precontracted systems with only a single JA and ]A] even, everything is 
exactly as before. For  the precontracted systems with ]A] odd, the zeros 
in the tanh(flh)plane are still given by (10). However, since JA~<0, we 
have the ]AIth roots of the positive number (1 + W ) / ( 1 - W ) .  In fact, 
(1 + W ) / ( 1 -  W ) >  1, and hence one zero will be on the positive, real, 
tanh(flh) axis at some point > 1. For  IA] = 3 one has the situation shown 
in Fig. 3a. The real tanh(flh) axis maps to a circle of infinite radius through 
the points _+ 1 in the z plane, i.e., it maps to  the real z axis. We need only 
be concerned with that part of the real tanh(flh) axis where tanh(f ih)> 1 
which maps to the negative, real z axis with z < -1 .  Therefore again one 
has a circle free of zeros which is centered on the origin of the complex 
z plane and which has a nonzero radius r independent of the temperature 
(see Fig. 3b). As in Theorem 3, as each contraction is made, the set product 
reduces the size of the circular region free of zeros, yet since we have a 
finite number of contractions of any one site, since each site is involved in 
only a finite number of interactions, after the complete system is built up 
there remains a circle of nonzero radius R free of zeros. Hence for 
h < (kT/2)ln(R)= C(T) there exist no phase transitions. �9 

Due to the presence of JA with A odd we do not have the symmetry 
necessary to say anything about the h > 0 axis. However, by symmetry for 
the system of Theorem4 but with J A > 0  for [A] odd there is no phase 
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Fig. 3. a.) Zeros in the tanh(/~h)-plane for a three site system with antiferromagnetic three 
site interaction lie on the two dotted lines shown along with the positive real axis with 
tauh(/~h) > 1 b.) Zeros in the z-plane for the system of part 3a lie on the three dotted circles 
shown. The closed circular region M is the solid-line circle and the region outside the circle. 

transition in the interval of the real h axis given by (C(T), oe), where 
C(T) = (kT/2)ln(1/R). Now when T ~ 0  there can be no phase transitions 
on the positive h axis. 

We conclude by stating that we have presented two theorems which 
allow one to find regions of the phase diagram in the z - T  or h-Tplane 
where phase transitions do not occur for a very large class of MSI systems. 
These systems do not have to be on any regular lattice, can be of any 
dimension, and can include systems with a very complex set of MSIs. 
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